Location Prediction of Mobility Management Using Soft Computing Techniques in Cellular Network
نویسندگان
چکیده
This work describes the neural network technique to solve location management problem. A multilayer neural model is designed to predict the future prediction of the subscriber based on the past predicted information of the subscriber. In this research work, a prediction based location management scheme is proposed for locating a mobile terminal in a communication without losing quality maintains a good response. There are various methods of location management schemes for prediction of the mobile user. Based on individual characteristic of the user, prediction based location management can be implemented. This work is purely analytical which need the past movement of the subscriber and compared with the simulated one. The movement of the mobile target is considered as regular and uniform. An artificial neural network model is used for mobility management to reduce the total cost. Single or multiple mobile targets can be predicted. Among all the neural techniques multilayer perceptron is used for this work. The records are collected from the past movement and are used to train the network for the future prediction. The analytical result of the prediction method is found to be satisfactory. Index Terms — Cellular Network, Mobility Management,Neural Network, Multi layer perceptron
منابع مشابه
Access and Mobility Policy Control at the Network Edge
The fifth generation (5G) system architecture is defined as service-based and the core network functions are described as sets of services accessible through application programming interfaces (API). One of the components of 5G is Multi-access Edge Computing (MEC) which provides the open access to radio network functions through API. Using the mobile edge API third party analytics applications ...
متن کاملA COMPARATIVE STUDY OF TRADITIONAL AND INTELLIGENCE SOFT COMPUTING METHODS FOR PREDICTING COMPRESSIVE STRENGTH OF SELF – COMPACTING CONCRETES
This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their perf...
متن کاملInvestigating electrochemical drilling (ECD) using statistical and soft computing techniques
In the present study, five modeling approaches of RA, MLP, MNN, GFF, and CANFIS were applied so as to estimate the radial overcut values in electrochemical drilling process. For these models, four input variables, namely electrolyte concentration, voltage, initial machining gap, and tool feed rate, were selected. The developed models were evaluated in terms of their prediction capability with m...
متن کاملEstimating scour below inverted siphon structures using stochastic and soft computing approaches
This paper uses nonlinear regression, Artificial Neural Network (ANN) and Genetic Programming (GP) approaches for predicting an important tangible issue i.e. scours dimensions downstream of inverted siphon structures. Dimensional analysis and nonlinear regression-based equations was proposed for estimation of maximum scour depth, location of the scour hole, location and height of the dune downs...
متن کاملPrediction of the pharmaceutical solubility in water and organic solvents via different soft computing models
Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013